3-KETOQUINOLONES – A NEW CLASS OF PHOTOINITIATOR

Xavier Allonas ^a, Marika Morone ^b, Gabriele Norcini ^b, <u>Stephen R Postle</u> ^c, and Vincenzo Razzano ^b

^a Laboratoire de Photochimie et d'Ingénierie Macromoléculaires,
Université de Haute Alsace, 3b rue Alfred Werner, 68093 Mulhouse, France
^b IGM Resins Italia s.r.l., Via Roberto Lepetit, 34, 21040 Gerenzano VA, Italy
^c IGM Resins USA, Inc., 3300 Westinghouse Boulevard, Charlotte, NC 28273, USA

Coumarins, and, in particular, 3-ketocoumarins have long been postulated as useful Norrish Type II photoinitiators [1 - 4] but have not found commercial use until the twin problems of sufficient solubility in 100% solids uv-curing formulations and excellent reactivity at uv-LED wavelengths were overcome [5], [6], [7]. We present a novel and related set of photoinitiators, based on the 3-ketoquinolone ring structure. This class of photoinitators offers the potential advantages over 3-ketocoumarins of simplified structures and visible (blue) light reactivity, along with good solubility and low post-curing migration potential. In this paper, we present synthetic approaches along with characterization and calculations on triplet energies. A patent application has been submitted.

^[1] GB 1578662

^[2] US 4278751

^[3] US 4289844

^[4] US 9382433 B2

^{[5] &}quot;Design of New 3-ketocoumarins for UV-LED Curing" by Marika Morone et al., Best Paper Award at RadTech North America, May 2016

^{[6] &}quot;3-Ketocoumarins for LED curing" EP 2909243 B1 and family

^{[7] &}quot;Novel 3-ketocoumarins, a process for their preparation, and their use as photoinitators in photopolymerization reactions" EP 3472410 B1 and family